Updated May 14th, 2019 at 14:30 IST

IN PICTURES | 'The Moon is shrinking and shaking; maybe generating moonquakes', says NASA

The Moon is shrinking as its interior cools, getting more than about 150 feet (50 meters) skinnier over the last several hundred million years, says NASA.

Reported by: Digital Desk
| Image:self
Advertisement

The Moon is shrinking as its interior cools, getting more than about 150 feet (50 meters) skinnier over the last several hundred million years, says NASA. Just as a grape wrinkles as it shrinks down to a raisin, the Moon gets wrinkles as it shrinks. Unlike the flexible skin on a grape, the Moon’s surface crust is brittle, so it breaks as the Moon shrinks, forming “thrust faults” where one section of crust is pushed up over a neighboring part.

“Our analysis gives the first evidence that these faults are still active and likely producing moonquakes today as the Moon continues to gradually cool and shrink,” said Thomas Watters, senior scientist in the Center for Earth and Planetary Studies at the Smithsonian’s National Air and Space Museum in Washington. “Some of these quakes can be fairly strong, around five on the Richter scale.”

This is a view of the Taurus-Littrow valley taken by NASA’s Lunar Reconnaissance Orbiter spacecraft. The valley was explored in 1972 by the Apollo 17 mission astronauts Eugene Cernan and Harrison Schmitt. They had to zig-zag their lunar rover up and over the cliff face of the Lee-Lincoln fault scarp that cuts across this valley. Credits: (NASA/GSFC/Arizona State University)

These fault scarps resemble small stair-step shaped cliffs when seen from the lunar surface, typically tens of yards (meters) high and extending for a few miles (several kilometers). Astronauts Eugene Cernan and Harrison Schmitt had to zig-zag their lunar rover up and over the cliff face of the Lee-Lincoln fault scarp during the Apollo 17 mission that landed in the Taurus-Littrow valley in 1972.

Watters is lead author of a study that analyzed data from four seismometers placed on the Moon by the Apollo astronauts using an algorithm, or mathematical program, developed to pinpoint quake locations detected by a sparse seismic network. The algorithm gave a better estimate of moonquake locations. Seismometers are instruments that measure the shaking produced by quakes, recording the arrival time and strength of various quake waves to get a location estimate, called an epicenter. The study was published May 13 in Nature Geoscience.

Astronauts placed the instruments on the lunar surface during the Apollo 11, 12, 14, 15, and 16 missions. The Apollo 11 seismometer operated only for three weeks, but the four remaining recorded 28 shallow moonquakes – the type expected to be produced by these faults – from 1969 to 1977. The quakes ranged from about 2 to around 5 on the Richter scale.

Using the revised location estimates from the new algorithm, the team found that eight of the 28 shallow quakes were within 30 kilometers (18.6 miles) of faults visible in lunar images. This is close enough to tentatively attribute the quakes to the faults, since modeling by the team shows that this is the distance over which strong shaking is expected to occur, given the size of these fault scarps. Additionally, the new analysis found that six of the eight quakes happened when the Moon was at or near its apogee, the farthest point from Earth in its orbit. This is where additional tidal stress from Earth’s gravity causes a peak in the total stress, making slip-events along these faults more likely.

“We think it’s very likely that these eight quakes were produced by faults slipping as stress built up when the lunar crust was compressed by global contraction and tidal forces, indicating that the Apollo seismometers recorded the shrinking Moon and the Moon is still tectonically active,” said Watters. The researchers ran 10,000 simulations to calculate the chance of a coincidence producing that many quakes near the faults at the time of greatest stress. They found it is less than 4 percent. Additionally, while other events, such as meteoroid impacts, can produce quakes, they produce a different seismic signature than quakes made by fault slip events.

The Taurus-Littrow valley is the location of the Apollo 17 landing site (asterisk). Cutting across the valley, just above the landing site, is the Lee-Lincoln fault scarp. Movement on the fault was the likely source of numerous moonquakes that triggered events in the valley. 1) Large landslides on of slopes of South Massif draped relatively bright rocks and dust (regolith) on and over the Lee-Lincoln scarp. 2) Boulders rolled down the slopes of North Massif leaving tracks or narrow troughs in the regolith on the slopes of North Massif. 3) Landslides on southeastern slopes of the Sculptured Hills. Credits: NASA/GSFC/Arizona State University/Smithsonian)

Advertisement

Published May 14th, 2019 at 09:29 IST