'Artificial Intelligence (AI) Systems Could Help Robots Assist Soldiers In The Battlefield', Say US Scientists

US News

Artificial intelligence (AI) systems that could help robots assist soldiers in the battlefield in the future are being developed by scientists in the US.

Written By Digital Desk | Mumbai | Updated On:

Artificial intelligence (AI) systems that could help robots assist soldiers in the battlefield in the future are being developed by scientists in the US.

For the research, published in the journal Science Advances, the team looked at soldier brain activity during specific tasks for ways to incorporate AI teaming to dynamically complete tasks.

READ | Why AI Is For Everyone, Not Just For Engineers: Artificial Intelligence Is The Next World Order After All

Technologies that can predict states and behaviors of the individual soldier may help create a more optimized team, informed Jean Vettel, a senior neuroscientist at the Army Research Laboratory (ARL) in the US.

In order to predict such behavior and consequently optimize team performance, ARL and the University at Buffalo are looking at ways the dynamics and architecture of the human brain may be coordinated.

"In military operations, soldiers perform multiple tasks at once. They're analyzing information from multiple sources, navigating environments while simultaneously assessing threats, sharing situational awareness, and communicating with a distributed team," said Vettel.

"This requires soldiers to constantly switch among these tasks, which means that the brain is also rapidly shifting among the different brain regions needed for these different tasks. If we can use brain data at the moment to indicate what task they're doing, AI could dynamically respond and adapt to assist the Soldier in completing the task," he added.

The researchers first sought to understand how the brain coordinates its different regions while executing a particular task in order to achieve this future capability.  They used a computational approach to understand how this may be characterized to inform the behavioral prediction.

They then mapped how different regions of the brain were connected to one another in 30 different people via tracts of tissue called white matter, therefore taking their study further.

Scientists converted these maps into computational models of each subject's brain and used computers to simulate what would happen when a single region of a person's brain was stimulated.

Post the conversion, they then used a mathematical framework, which they developed, to measure how brain activity became synchronized across various cognitive systems in the simulations.

"While the work has been deployed on individual brains of a finite brain structure, it would be very interesting to see if coordination of Soldiers and autonomous systems may also be described with this method, too," said Javier Garcia, an ARL neuroscientist.

"Much how the brain coordinates regions that carry out specific functions, you can think of how this method may describe coordinated teams of individuals and autonomous systems of varied skills work together to complete a mission," Garcia added.

(With PTI inputs)

By 2030, 40% Indian will not have access to drinking water